Hyperglycaemia

Hyperglycaemia is a condition in which an excessive amount of glucose circulates in the blood plasma. This is generally a blood sugar level higher than 11.1 mmol/l (200 mg/dl), but symptoms may not start to become noticeable until even higher values such as 13.9–16.7 mmol/l (~250–300 mg/dl). A subject with a consistent range between ~5.6 and ~7 mmol/l (100–126 mg/dl) (American Diabetes Association guidelines) is considered slightly hyperglycemic, and above 7 mmol/l (126 mg/dl) is generally held to have diabetes. For diabetics, glucose levels that are considered to be too hyperglycemic can vary from person to person, mainly due to the person's renal threshold of glucose and overall glucose tolerance. On average, however, chronic levels above 10–12 mmol/L (180–216 mg/dl) can produce noticeable organ damage over time. The degree of hyperglycemia can change over time depending on the metabolic cause, for example, impaired glucose tolerance or fasting glucose, and it can depend on treatment. Temporary hyperglycemia is often benign and asymptomatic. Blood glucose levels can rise well above normal and cause pathological and functional changes for significant periods without producing any permanent effects or symptoms. During this asymptomatic period, an abnormality in carbohydrate metabolism can occur which can be tested by measuring plasma glucose. Chronic hyperglycemia at above normal levels can produce a very wide variety of serious complications over a period of years, including kidney damage, neurological damage, cardiovascular damage, damage to the retina or damage to feet and legs. Diabetic neuropathy may be a result of long-term hyperglycemia. Impairment of growth and susceptibility to certain infection can occur as a result of chronic hyperglycemia.
In untreated hyperglycemia, a condition called ketoacidosis may develop because decreased insulin levels increase the activity of hormone sensitive lipase. The degradation of triacylglycerides by hormone-sensitive lipase produces free fatty acids that are eventually converted to acetyl-coA by beta-oxidation. in traumatic head injuries, and is associated with postoperative cognitive dysfunction following CABG.
Manuscripts with relevance to the scope can be submitted to our Email: editor.ecdr@scitechnol.com or Online Submission Endocrinology