Hor-mones

Image

A hormone is any member of a class of signalling molecules in multicellular organisms that are transported to distant organs to regulate physiology and / or behaviour. Hormones are required for the correct development of both animals and plants. The lax definition of a hormone means that many different classes of molecule can be defined as hormones. Among the substances that can be considered hormones, are eicosanoids, steroids, amino acid derivatives, protein / peptides and gases. Hormones are used to communicate between organs and tissues. In vertebrates, hormones are responsible for the regulation of many physiological processes and behavioral activities such as digestion, metabolism, respiration, sensory perception, sleep, excretion, lactation, stress induction, growth and development, movement, reproduction, and mood manipulation. In plants, hormones modulate almost all aspects of development, from germination to senescence.

Hormones affect distant cells by binding to specific receptor proteins in the target cell, resulting in a change in cell function. When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription, resulting in increased expression of target proteins. Hormones can also act in rapid, non-genomic pathways that can be synergistic with genomic effects. Water-soluble hormones (such as peptides and amines) generally act on the surface of target cells via second messengers. Lipid soluble hormones, (such as steroids) generally pass through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei. A notable exception to this are brassinosteroids in plants, which despite being lipid soluble, still bind to their receptor at the cell surface. Hormone producing cells are typically of a specialized cell type, residing within a particular endocrine gland, such as the thyroid gland, ovaries, and testes. Hormones exit their cell of origin via exocytosis or another means of membrane transport. The hierarchical model is an oversimplification of the hormonal signaling process. Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues, as is the case for insulin, which triggers a diverse range of systemic physiological effects. Different tissue types may also respond differently to the same hormonal signal. The discovery of hormones and endocrine signaling occurred during studies of how the digestive system regulates its activities, as explained at Secretin & Discovery.

Manuscripts with relevance to the scope can be submitted to our Email: editor.jgsd@scitechnol.com or online Submission at Genital System