Cultured neuronal network

A cultured neuronal network is a cell culture of neurons that is used as a model to study the central nervous system, especially the brain. Often, cultured neuronal networks are connected to an input/output device such as a multi-electrode array (MEA), thus allowing two-way communication between the researcher and the network. This model has proved to be an invaluable tool to scientists studying the underlying principles behind neuronal learning, memory, plasticity, connectivity, and information processing.Cultured neurons are often connected via computer to a real or simulated robotic component, creating a hybrot or animat, respectively.
Advantages
The use of cultured neuronal networks as a model for their in vivo counterparts has been an indispensable resource for decades.It allows researchers to investigate neuronal activity in a much more controlled environment than would be possible in a live organism. Through this mechanism researchers have gleaned important information about the mechanisms behind learning and memory.
A cultured neuronal network allows researchers to observe neuronal activity from several vantage points. Electrophysiological recording and stimulation can take place either across the network or locally via an MEA, and the network development can be visually observed using microscopy techniques. Moreover, chemical analysis of the neurons and their environment is more easily accomplished than in an in vivo setting.
Disadvantages
Cultured neuronal networks are by definition disembodied cultures of neurons. Thus by being outside their natural environment, the neurons are influenced in ways that are not biologically normal. Foremost among these abnormalities is the fact that the neurons are usually harvested as neural stem cells from a fetus and are therefore disrupted at a critical stage in network development. When the neurons are suspended in solution and subsequently dispensed, the connections previously made are destroyed and new ones formed. Ultimately, the connectivity (and consequently the functionality) of the tissue is changed from what the original template suggested.
Another disadvantage lies in the fact that the cultured neurons lack a body and are thus severed from sensory input as well as the ability to express behavior – a crucial characteristic in learning and memory experiments. It is believed that such sensory deprivation has adverse effects on the development of these cultures and may result in abnormal patterns of behavior throughout the network.
Cultured networks on traditional MEAs are flat, single-layer sheets of cells with connectivity only two dimensions. Most in vivo neuronal systems, to the contrary, are large three-dimensional structures with much greater interconnectivity. This remains one of the most striking differences between the model and the reality, and this fact probably plays a large role in skewing some of the conclusions derived from experiments based on this model.