COVID-19: immunopathology and its implications for therapy

Image

Severe coronavirus disease 2019 (COVID-19) is characterized by pneumonia, lymphopenia, exhausted lymphocytes and a cytokine storm. Significant antibody production is observed; however, whether this is protective or pathogenic remains to be determined. Defining the immune pathological changes in patients with COVID-19 provides potential targets for drug discovery and is important for clinical management. Coronavirus disease 2019 (COVID-19), a newly emerged respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become pandemic. Most patients with COVID-19 exhibit mild to moderate symptoms, but approximately 15% progress to severe pneumonia and about 5% eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure. The mainstay of clinical treatment consists of symptomatic management and oxygen therapy, with mechanical ventilation for patients with respiratory failure. Although several antiviral drugs, including the nucleotide analogue remdesivir, are being actively tested, none has been specifically approved for COVID-19. In addition to vaccine development and approaches that directly target the virus or block viral entry, treatments that address the immunopathology of the infection have become a major focus. SARS-CoV-2 infection can activate innate and adaptive immune responses. However, uncontrolled inflammatory innate responses and impaired adaptive immune responses may lead to harmful tissue damage, both locally and systemically. In patients with severe COVID-19, but not in patients with mild disease, lymphopenia is a common feature, with drastically reduced numbers of CD4+ T cells, CD8+ T cells, B cells and natural killer (NK) cells, as well as a reduced percentage of monocytes, eosinophils and basophils. An increase in neutrophil count and in the neutrophil-to-lymphocyte ratio usually indicates higher disease severity and poor clinical outcome. In addition, exhaustion markers, such as NKG2A, on cytotoxic lymphocytes, including NK cells and CD8+ T cells, are upregulated in patients with COVID-19. In patients who have recovered or are convalescent, the numbers of CD4+ T cells, CD8+ T cells, B cells and NK cells and the markers of exhaustion on cytotoxic lymphocytes normalize. Moreover, SARS-CoV-2-specific antibodies can be detected.

Submit manuscripts at https://www.scholarscentral.org/submissions/industrial-electronics-applications.html or an e-mail attachment to the Editorial Office at manuscript@scitechnol.com

Best Regards,
Editorial Manager

Journal of Pharmaceutical Sciences & Emerging Drugs
Email: editor.jpsed@peerjournal.org